

Automated Trucks

The next big disruptor in the automotive industry?

Roland Berger study

Disruption potential

Automated trucks address several challenges that the trucking industry is facing simultaneously: hours-of-service, safety, driver shortage and fuel costs

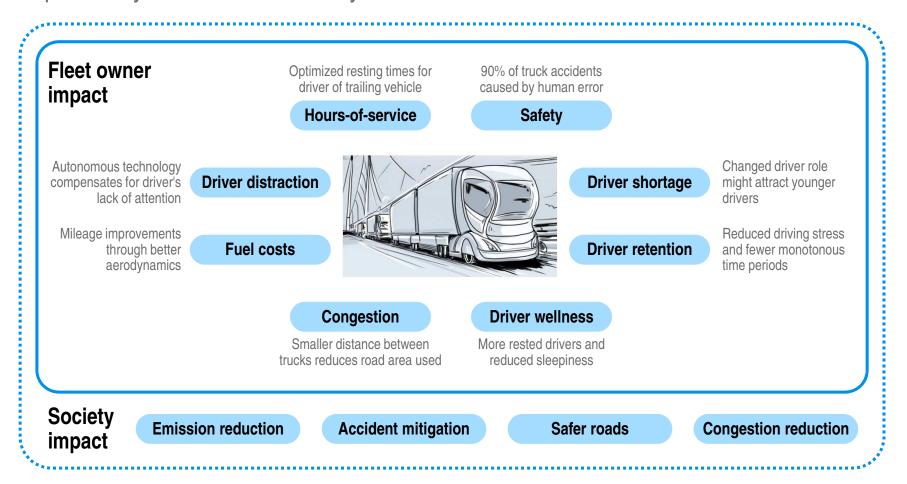
TCO benefit

In early stages, fast payback of technology investment can only be reached in few applications with high share of truck platooning – significant cost savings expected only long term with driverless trucks

Safety as true driver

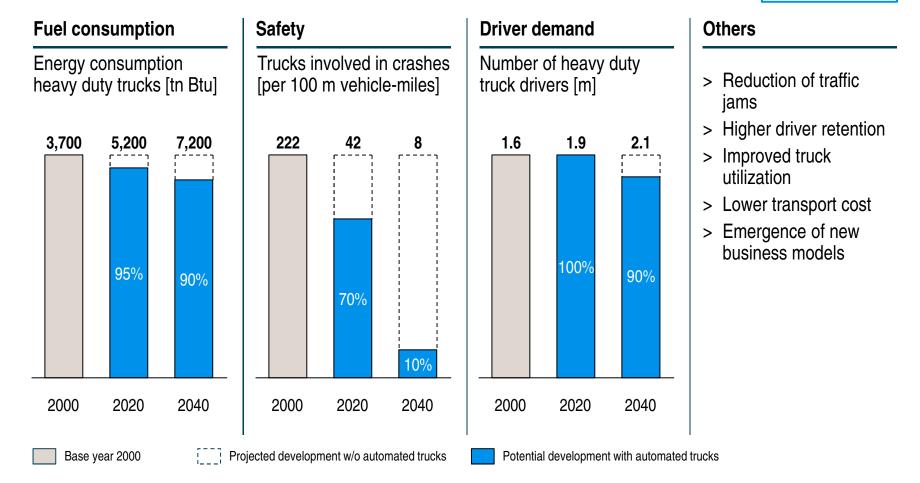
As pull from fleet operators will be limited given the slow payback, safety regulation will become a major driver in the adoption of automated trucks

Hours-of-service, safety, driver shortage and fuel costs are top issues of the trucking industry


Top issues of the trucking industry

Most of the top trucking industry issues can be addressed by automated trucks – Benefits expected also for wider society

Top industry issues addressed by automated trucks



Automated trucks have the potential to bring a disruptive change to the trucking industry

Automated trucks – Disruption potential

Indicative

Benefits of automated trucks are twofold: safer and more comfortable vehicle operation and fuel savings from platooning

Benefits from automated trucks

Automated driving

Increased driver comfort and safety through fully automated vehicle operation

Benefits

- > Optimized driver rest periods
- > Fuel efficiency gains from predictive driving
- > Eliminating human error
- > Better vehicle utilization
- > Eventually driverless vehicle

Cooperative automated driving

Improved aerodynamics and fuel consumption through reduced intervehicle spacing

Benefits

> Additional fuel efficiency gains

The technological development towards fully automated trucks takes place in stages - Driver engagement changes with stages

Technological roadmap (SAE stage definition)

Stage 0 No **Automation**

Driver is fully engaged all the time, warning signals might be displayed

Stage 1 Driver **Assistance**

Automation of individual function. driver fully engaged – Driver may be "feet off" (when using ACC) or "hands off" (when using Lane Keep Assist)

Stage 2 **Partial Automation**

Automation of multiple functions, driver fully engaged - Driver may be both "feetoff" and "hands off", but eyes must stay on the road

Stage 3 Conditional **Automation**

Automation of multiple functions, driver responds to a request to intervene - Driver may be "feet-off", "hands off" and "eves off", but must be able to resume control quickly

Stage 4 High **Automation**

Automated in certain conditions. driver not expected to monitor road -Driver has no responsibility during automated mode

Stage 5 Full **Automation**

Situation independent automated driving - Driver has no responsibility during drivina

Each stage of automated trucks requires increasingly complex features that transfer more control from the driver to the truck

Required features by stage of automation

Stage 0 No **Automation**

- > Blind spot detection/ right turn assistant
- > Collision warn system
- > Lane departure warning system
- > Driver monitoring system
- > Traffic sign recognition

Stage 1 Driver **Assistance**

- > Emergency braking system
- > Adaptive cruise control or
- > Lane keep assist
- > Driver-assisted truck platoon (DATP)

Stage 2 **Partial Automation**

- > Traffic jam/ construction site assistant
- > Highway assist
- > Predictive powertrain control
- > Lane change assist incl. rightturnina
- > Intelligent parking assist system

Stage 3 **Conditional Automation**

- > Platooning
- > Real time communication between trucks via V2V/DSRC
- > Highway pilot driver "alert"

Stage 4 High **Automation**

> Highway pilot no driver responsibility

Stage 5 Full **Automation**

> Truck pilot

Today Pending Future

Autonomous trucks are enabled by an interplay of technology areas including hardware, software and integrated controls

Key technology requirements automated trucks

A variety of sensors, connectivity and vehicle control systems are used in automated trucks along with HMI and software modules

Technologies used in automated trucks

Sensors monitor the surroundings of the vehicle

- > Radar sensors monitor traffic in front (Stage 1) and to the sides of the truck (Stage 2)
- > Front stereo camera adds redundancy and monitors traffic in front (Stage 3)
- > Lidar creates high resolution 3D environmental data (Stage 3)
- > Internal camera monitors driver to ensure that he can take back control if needed (Stage 3)

Vehicle control allows steering of the vehicle

- > Automated steering for lateral control of the vehicle (Stage 2)
- > Automated manual transmission (Stage 2) already on significant share of US trucks (~40%)
- > Central ECU processes all sensor data (Stage 3)

Vehicle connectivity (V2V/V2I) is not required for automated vehicles in Stage 1 and 2, but platooning depends on V2V communication between paired trucks

HMI communicates vehicle information to the driver

- > Informs the driver about the automated mechanical actions of the vehicle
- > Warns or instigates action from driver
- > Displays 3D map that the vehicle uses for its operations to help with driver's visualization

Spatial imaging is done by aggregating the inputs from all sensors to develop 3D maps

- > Profile mapping of surroundings includes data about shapes, sizes, distances and speeds
- > Sophisticated algorithms required to process surrounding objects at a high rate
- > Software constantly learns for future adaptation

Mapping and path planning/control uses advanced positioning systems and sensor data to plot, track and control appropriate routes to vehicle destination

- System processes GPS data along with real time information received from imaging and mapping sensors like cameras and radar
- > Complex software required to determine positions of surrounding vehicles with precision and account for other variables like traffic, road conditions, accidents etc.

Incremental costs of automated driving increase from Stage 1 to 5 - Total incremental cost of stage 5 truck over 20 k USD

Incremental technologies and vehicle cost per stage [USD per truck]

Share of cost

Driver and fuel are the largest cost items and will be impacted by automated driving – Additional savings on insurance cost possible

Impact of automated driving on operating costs [USD/mile]

We calculated operating cost benefits and investment paybacks for three representative use cases

Use cases – Example USA

Long-haul

Regional - high traffic roads

Regional - low traffic roads

- > Long distance traffic between warehouse and harbor
- > Trip length 2,000 miles
- > Majority of trip on high traffic highways
- > Likelihood to form a platoon 40%-50%
- > **Driver** not required any more in Stage 5 (fully automated warehouse with automatic loading/unloading)
- Traffic intensity

- > **Short distance traffic** between harbor and distribution center
- > Trip length 400 miles
- > Majority of trip on high traffic highways
- > Likelihood to form a platoon 40%-50%
- > **Driver** not required any more in Stage 5 (fully automated warehouse with automatic loading/unloading)

- > Short distance traffic between regional hub and local warehouse
- > Trip length 400 miles
- > Low share of trip on high traffic highways - Majority on less frequented rural roads
- > Likelihood to form a platoon 10%
- > **Driver** still required in Stage 5, e.g. for loading and unloading

Long-haul case allows payback in 3 years for all stages but stage 3 – Payback times too long for regional transportation

Payback calculation for use cases

¹⁾ Incremental vehicle cost: Stage 1: 1,800 USD, Stage 2: 6,900 USD, Stage 3: 13,100 USD, Stage 4: 19,000 USD, Stage 5: 23,400 USD 2) Driver-assisted truck platoon

Source: Roland Berger

Up to Stage 3, level of platooning will influence adoption of automated trucks, driver cost savings drive adoption in Stage 4

Impact of platooning on payback times [mo]

Key insights

- > Adoption of automated trucks goes through two distinct phases
 - In the mid-term (Stage 1-3), payback periods increase significantly by stage as cost savings remain flat while per vehicle investments grow
 - Level of platooning has significant impact on payback periods up to Stage 3 – Payback within 3 years can only be reached by operating in platoon mode for over 90% of miles travelled
 - In the long-term, payback periods drop with Stage 4 due to additional driver cost savings – fast progression from stage 3 to 4 expected
 - Long-term adoption less impacted by level of platooning

To realize the potential of automated driving several ecosystem challenges need to be solved

Main requirements for self-driving trucks

- > **Hardware** is largely available with incremental innovation needed
- > **Software** & **integration** need advanced development
- > **Geo-mapping** needed for highly detailed elevation maps for PPC¹⁾

Supply chain development

- > Players are forming partnerships and investing in autonomous trucks technology
- > System integrator required, but still missing/too early to define

Legal requirements

- > Legal driving framework needs to be updated
- > **Testing** of automated trucks must be enabled
- > Liability issues must be clarified

Ethical considerations

- > "Dilemma" of fair decision vs. rationale decision
- > Broad dialogue among all stakeholders required
- > Needs to serve as **key influence** in legal requirements

Enabling ecosystem

- > Availability of required **infrastructure** (e.g., LTE network)
- > Truck **driver** acceptance of systems and qualification
- > Cyber security standards to enable safe truck operation

1) Predictive Powertrain Control

Four key implications for the trucking industry have been derived

Key implications for stakeholders of trucking industry

		Key insight from analysis	Implication for stakeholders
Safety as real driver behind adoption of automated trucks	1	Business case for fleet operators is positive only for few applications	 Limited pull from fleet operators due to limited commercial benefits Limited push from OEMs as long as legal issues are not resolved Tighter safety requirements pushes ADAS into the market and drives adoption of automated trucks
Roles and responsibilities within the value chain change	2	System complexity will significantly increase with higher stages of automation	 Definition of system architectures and responsibility for system integration remains the domain of OEMs across all stages While OEMs continue to source complete functions from suppliers in Stage 2, a single entity will be required in Stage 3 to handle the higher complexity and interaction between systems (OEM or an ESP) With Stages 4 and 5 being only software driven, and the need to realize scale effects, it is possible that a large software player gains a large share of the revenue and profit pool
New business models emerge	3	Commercial feasibility of automated platoons requires support functions	> New business models such as Platoon Service Providers or ware- houses with automated loading and unloading functions will emerge
Operator models change	4	Magnitude of cost savings up to Stage 3 depends on ability to form a platoon	> Large fleet operators will gain a competitive advantage over owner drivers as they can more easily form intra fleet platoons and are more likely to platoon with peers than with owner drivers

While pull from fleet operators and push from OEMs will remain limited, safety regulation will drive adoption of automated trucks

Technology push and pull from different stakeholders

Fleet operators

Limited pull from fleet operators due to limited commercial benefits

Regulation

Tighter safety requirements pushes ADAS into the market and drives adoption of automated trucks

OEM

Limited push from OEMs as long as legal and cyber security issues are not resolved

Extend of push / pull

Roles and responsibilities within the value chain will change with different stages of automation

Role sharing between OEMs and suppliers

Platoon Service Providers are expected to emerge that orchestrate platoon formation across fleets

Business model change: Platoon formation options

Large fleet operators will gain a competitive advantage as they are more likely to find platooning partners

Options for platooning collaboration

Key insights

- Platooning outside own fleet bears the risk to improve a competitors bottomline
- > Large fleets have a competitive advantage as they can platoon within own fleet and also have stronger time latitude and can afford waiting for platooning partner

Your contacts at Roland Berger

Stephan Keese

Senior Partner Automotive, North America

Stephan.Keese @rolandberger.com

+1 312 385-0426

Dr. Wolfgang Bernhart

Senior Partner Automotive, Germany

wolfgang.bernhart @rolandberger.com

+49 160 744-7421

Norbert Dressler

Senior Partner Automotive, Germany

norbert.dressler @rolandberger.com

+49 160 744-7420

Markus Baum

Principal Automotive, Germany

markus.baum @rolandberger.com

+49 160 744-7121

Dr. Walter Rentzsch

Project Manager Automotive, North America

walter.rentzsch @rolandberger.com

+1 248 275-3851

Berger

